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Two findings are reported for the D + H, -, DH + H reaction on the basis of the exact 
quantum mechanical calculation for J = 0, where J is total angular momentum. First, with use 
of the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface and the Varandas surface, we 
demonstrate that a rather small difference in potential energy surface (PES) induces a 
surprisingly large effect on reaction dynamics. Two origins of the discrepancy are pointed out 
and analyzed: ( 1) Noncollinear conformation in the reaction zone contributes to the reaction 
significantly despite the fact that the minimum energy path and the saddle point are located in 
the collinear configuration. (2) A difference in the distant part of PES also causes a 
discrepancy in the reaction dynamics indirectly, although this effect is much smaller than ( 1) . 
Secondly, we investigate the validity of the constant centrifugal potential approximation 
(CCPA) based on the accurate results for J = 0. The use of CCPA to estimate total cross 
section and rate constant is again proved to have practical utility as in the cases of the sudden 
and adiabatic approximations. 

I. INTRODUCTION 
Recently it has become possible to carry out very accu- 

rate quantum mechanical calculations for the three-dimen- 
sional atom-diatom chemical reaction systems with small 
reduced masses (e.g., H + H, + H, + Hand its isotope var- 
iants, and F + H, -tFH + HI-9 ). This makes an elaborate 
comparison of theory and experiment possible and enables 
us to investigate the effects of potential energy surface 
(PES) topography on the reaction dynamics without ambi- 
guity. A nice interplay among dynamics theory, experiment 
and quantum chemistry would become feasible to make our 
understanding of the mechanisms of these reactions much 
deeper. ‘O**’ At the same time much effort should also be 
made to clarify the validity of the presently available ap- 
proximate theories and to further develop better and more 
illuminating theories. This is indispensable for applications 
to reaction systems involving heavier atoms and to those 
involving polyatomic molecules. 

In this paper we report the following two findings: ( 1) a 
large effect of PES topography on the reaction dynamics of 
D + H, +DH + H and (2) the usefulness of the constant 
centrifugal potential approximation (CCPA) 12*i3 to esti- 
mate cross section and rate constant. With use of the hyper- 
spherical coordinate (HSC) approach we have carried out 
accurate 3D quantum mechanical calculations for J= 0, 
where J is the total angular momentum quantum number. 

First, we demonstrate that a rather small difference in 
PES induces a surprisingly large effect on the dynamics. The 
PES’s employed here are the Liu-Siegbahn-Truhlar-Horo- 
witz (LSTH) surface’4*‘5 and the surface proposed by Var- 
andas (Varandas) . I6 Varandas et al. have constructed an- 
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other PES (DMBE) for an H, system, which is considered 
to be the most accurate one at present.17 The DMBE surface 
was employed by Kress, Bacic, Parker, and Pack” and by 
Auerbach, Zhang, and Miller” to compare the cross sec- 
tions with those of LSTH. Their conclusions are slightly dif- 
ferent, but they found no significant differences in the dy- 
namics. The difference between these two surfaces is at most 
0.2 kcal mol - ’ . It should be noted that the Varandas surface 
used in this paper is the older one, which is supposed to be a 
surface well fitted to LSTH by rather simple analytical func- 
tions. Our purpose here is not to compare the calculated 
results with experiments, but to investigate the effects of PES 
topography on the dynamics. We found that the reaction 
probabilities for D+H, (Vi =ji = 0) 
+ DH( vf = O,l,Xj,) + H calculated with use of the Varan- 
das surface are, surprisingly, quite different from those of the 
LSTH surface (for instance, -60.0% at collision energy 
0.455 eV). It is thus very intriguing and important to investi- 
gate what parts of the PES cause this big difference in the 
dynamics. This is a very basic question in the theory of reac- 
tion dynamics. From our analysis we have obtained the fol- 
lowing two conclusions: ( 1) Noncollinear conformation in 
the reaction zone contributes to the reaction significantly, in 
spite of the fact that the saddle point and the minimum ener- 
gy path are located in the collinear configuration. The maxi- 
mum potential energy difference is - 1.0 kcal mol - ’ at the 
angle LDHH = 120”. (2) A small difference in the distant 
part of PES causes a difference in the inelastic transitions 
which affects the consecutive reactive transitions. In order to 
analyze these effects of PES topography we have employed 
the HSC approach which provides us with a powerful tool 
for this purpose.‘2,13 

The other purpose of the present paper is to test the 
constant centrifugal potential approximation (CCPA) 
based on the accurate treatment of the J = 0 case. This ap- 
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proximation has already been applied in the adiabatic 
bend” and reactive infinite order sudden approximation 
(RIOSA)” and proved to work acceptably we11.‘2*13 The 
total integral cross section and thermal rate constant are 
evaluated with use only of the reaction probability for J = 0. 
Our calculation shows that the CCPA also works well in the 
present case, especially for estimating rate constant. This is 
very useful, since we can estimate fairly accurate rate con- 
stant with much less effort. 

This paper is organized as follows: In Sec. II, in order to 
make discussions in the following sections smooth and clear 
we briefly describe our methods of calculation. These are the 
3D HSC approach, the discrete variable representation 
(DVR) method22’23 to calculate the 2D eigenvalue problem, 
the R-matrix propagation method24*25 to solve the scattering 
problem, and the CCPA. Section III presents analysis of the 
effects of PES topography. Two ways of switching surfaces, 
i.e., along the direction of the hyperradius and along that of 
the hyperangle 8, are employed. Section IV demonstrates 
usefulness of the CCPA. The results are compared with the 
accurate ones obtained by Zhang and Miller.7 Discussion 
and concluding remarks are given in Sec. V. 

II. METHOD OF CALCULATION 

As has been emphasized frequently, the HSC approach 
is effective and powerful not only in numerical computation 
but also to clarify the reaction mechanisms. In the present 
calculation we use the HSC defined by Johnson,26~27 which 
are a slight modification of the Smith-Whitten coordi- 
nates28*29 [hereafter, we call them Smith-Whitten-Johnson 
(SWJ) coordinates]. These are composed of the three inter- 
nal coordinates (p,0,4) and the three Euler angles (a&y). 
Of course, the center of mass coordinate system is adopted. 
With use of the usual mass-scaled Jacobi coordinates, the 
hyperspherical internal coordinates are defined as follows: 

p= (r’, +R:)“‘, O<p<cr,, (2.1) 

tine= 
L 

2r, R, sin OA ’ 
o<e<d2, (2.2) 
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script R from 4 for simplicity. Equations (2.1)-( 2.4) are not 
very simple, but roughly speaking, p, 0, and 4 can, respec- 
tively, be interpreted to represent size of the system, shape of 
the system and arrangement. 

In terms of these coordinates, the Hamiltonian of the 
triatomic system can be expressed as 

B(p,e,4,a,fi,y) = - -fE- 1. ap5 .A- 
w P5 JP JP 

+ R (p;e94,dw9 
with 

j.4 = [m,m,mc/(mA + mB + m,) I “29 

Bs (p;e,4,a&4 = - -!- A2(e94dW) 
2PP2 

+ vtp,e,4), 
and 

(2.5) 

(2.6) 

(2.7) 

A7 e,4,ew) = 4@ [&kAsin 2e%J 

+ 
1 a2 -- 

sin* e a42 1 
-2 ( 

J: + J: Jz, +- 1 - sin 8 1 + sin 8 2 sin’ 8 > 
4% cos eJ, a - -3 

sin28 a4 
(2.8) 

where m, is the mass of atom I ( = A&C), J,, J,, and Jz 
are X, Y, and Z components of the total angular momentum 
J in the body fixed frame with the principal axis taken to be 
the Z axis, and Y(p$,qS) is the potential energy function. In 
order to simplify the first term of the right-hand side of Eq. 
(2.5), we transform the Hamiltonian H and its eigenfunc- 
tion @“+@ (p,e,4,a,p,y) as follows: 

\yJ.+f~ = p5/2@JM~ (2.9) 

and 

(2.3) 

and 

cos $$A = 
2r, R, cos 8A 

L ’ 
o<fp <477, (2.4) 

H = p5/2jjp - 512, (2.10) 

where M and p are z component of J in the space fixed coor- 
dinate system, and parity, respectively. Using Eqs. (2.9) and 
(2.10) we obtain the modified Hamiltonian and Schrodinger 
equation, 

where HW%hdW,y> = - E az + H, (p;&P,adW 
L= [(< -Rip+ (2r,R, cose~)y 

and R is an index to specify arrangement. The Jacobi coordi- 
nates r,, RA, and 0, have the standard meanings, i.e., mass- 
scaled vibrational coordinate, mass-scaled translational co- 
ordinate, and angle between them, respectively. In 
SWJ-HSC, (p, 8, 4n ) and (p&4, + 277) represent the same 
internal configuration, and the HSC space is divided into 
two branches. This avoids the discontinuous half integer 
problem. 4*26 It should be noted that the hyperradius p and 
the angle 0 do not depend on arrangement. This is one of the 
powers of the HSC approach. The angle 4 specifies arrange- 
ment and thus depends on it, but hereafter we omit the sub- 

and 
2~ w 

(2.11) 

~JM~~pdW,~,B,y) = ~J~p(p,hhdW), (2.12) 

where H, = gX + 1 5fi2/8,up2. The total wave function qJMp 
is expanded as 

~JMp(p,hP,a,P,y) = C F~~P(p)4~~p(p;e,4,a,~,y), (2.13) n 
where FiMp (p) are the expansion coefficients and 4<? are 
the eigenfunctions of the surface Hamiltonian H, defined by 
Es. (2.7) 
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H, (p;e,d,a$,y)~b~(p;e,~,a~,y) 

= u:~pcp)~~~pcp;e,~,a~,y). (2.14) 
It should be  noted that the eigenvalues V$@(p) constitute 
only a  discrete spectrum, since all variables except p  are an- 
gle variables. The  computational procedure is thus divided 
into the following two steps: ( 1) The  2D eigenvalue problem 
of Eq. (2.14) is solved by dividing the range ofp (pstan ,pend ) 
into many small sectors, and  then solving each eigenvalue 
problem at the center of each sector. (2) Using these solu- 
tions, we next solve the close-coupling equat ions for 
F:“@(p) to obtain the S matrix, S$j,Q~,cu,j,,i~ (E), where 
uj,ji and  1, (u/,j, and  1,) represent vibrational, rotational 
and  orbital angular momentum quantum numbers in the ini- 
tial arrangement R (final arrangement/z ’ ) . F inally, reaction 
probability P i,j,A 0  c “,jrl, integral cross section o,,~,~ I - uij, L  
and  rate constant ku/j,A, c v, j, 1  are calculated by 

pi,j,A'-v,j,A 

= t21i + 1 1 - I,?, 1 si~ji/l,A'-uijit,A I29 (2.15) 
( *t 

= $2  tw+ l)pLfj,A'euijiA, 

“Ji .I 

ku,jf.t*-qj,A 

(2.16) 

= 
(-> 

SKT “2tKn - 2 

n-mi 

I 

cc 
X (2.17) 

0 
d4, &e - 8Et’~ufjiA ‘.-v,j, A, 

where k,, = [ 2m, (E - Eu,j, ) ] “*/fi with cuiji representing 
the internal energy of a  diatomic mo lecule in the state v,j, 
and  m, the reduced mass in the initial channel.  

In the following discussion we confine ourselves to the 
J = 0  case, in which H, of Eq. (2.14) becomes independent 
of Euler angles. For the first step ment ioned above, we em- 
ploy the symmetry adapted DVR method with a  successive 
truncation technique. 22*23 In this method the eigenfunctions 
of the kinetic energy operator are taken as basis functions, 
first. In this representation (finite basis representation: 
FBR), the kinetic energy part of the Hamiltonian matrix can 
be  easily analytically evaluated (in diagonal form). Then  
this matrix is transformed into a  nondiagonal  form by the 
DVR, in which the potential function part of the total Ham- 
iltonian becomes diagonal and  its diagonal elements are sim- 
ply given by the values of the potential at each location of the 
DVR basis functions. By diagonalizing this Hamiltonian 
matrix in DVR, we finally obtain the eigenvalues and  eigen- 
functions. This method does not require any numerical inte- 
gration, and  is very fast. See Refs. 22  and  23  for more details. 
In the present calculation, the basis functions for the 4  coor- 
dinate are taken to be  {cosm[d - (r/2)]} or 
{sin m [ 4  - (7r/2) ] } depending on  even or odd  symmetry 
about 4  = 7~/2, respectively. The  basis functions for the ~9 
coordinate are the Legendre polynomials {Pl (cos 28)). W e  
have used 100 functions for each coordinate. The  successive 
truncation technique is adopted: After solving the 1D eigen- 

value problem with respect to 4  at each 0, the 2D surface 
Hamiltonian is constructed by taking a  direct product of the 
DVR basis functions of 0  and  the 1D eigenfunctions of 4  
corresponding to the eigenvalues lower than a  given thresh- 
old, E,,cut (pr ) . W e  solve this 2D eigenvalue problem from 
the outermost sector pen,, to the innermost sector pSta,, and 
have t&n 4,cut (pr ) = V,,, (pr + 1  ) + 0.07 h-tree), 
where El,cut (p,) and V,, (pI+ , ) are the threshold at the 
I th sector and  the calculated highest energy level at the 
(I+ 1)th sector, respectively. It was confirmed that the 
lowest 50  levels in each symmetry have at least four signifi- 
cant figures. The  starting positionp,,,, and  the end  position 
pad are taken to be  2.00a. and  9.98ao, respectively, and  the 
size of sector is equal  to 0.03ao. 

For the second step, name ly for solving the close cou- 
pling equations, we emp loy the usual R-matrix propagat ion 
method.24’25 The  R-matrix is propagated from pSti,, to pend 
in the SWJ-HSC. Then  by following the method of Pack and  
Parker,4 the R matrix is transformed into the one  in the 
Delves coordinates at pend and the latter is used finally to 
yield the Smatrix which satisfies the proper boundary condi- 
tions in the Jacobi coordinates, See Ref. 4  for more detail. 
Since our calculations here are required only for the J = 0 
case, no  transformation from body-f ixed system to space- 
fixed system is necessary. 

Exact calculations of integral cross section and  thermal 
rate constant are usually very time  consuming, because the 
maximum total angular momentum Jneeded for the conver- 
gence reaches up  to about 30  even in such a  l ight-mass sys- 
tem as D + H, . Therefore, it is very mean ingful and  useful 
to evaluate these quantities by emp loying the CCPA with 
use only of the J = 0  results. The  physical mean ing of the 
CCPA is as follows: reactive transition occurs in a  spatially 
localized region around the potential ridge, and  thus the cen- 
trifugal potential ( -#J( J + 1  )/R *) may be  replaced by a  
constant value at a  certain representative position R + in this 
region ( -#J( J + 1  )/R +*>. This approximation has been 
proved to be  effective in the RIOSA and the adiabatic bend 
approximation. In these cases the potential r idge line and  R + 
can be  defined less amb iguously on  the 2D potential energy 
contour. In the accurate 3D treatment, however, potential 
r idge itself becomes two dimensional and  a  choice of R + 
becomes slightly amb iguous, unfortunately. This problem 
remains to be  considered more, especially for heterogeneous 
systems. Since the present system is not highly asymmetric, 
we have taken the transition state to estimate R +. The  actual 
calculations within the CCPA are carried out as follows: The  
reaction probability for nonzero J is given by 

-P~~~~ku,j,A (Et, I 
=pJ’O 

u,JIA'-u,j,A[~r -B+J(J+ 111, 
where 

??  B+=- 
2pR ?* 

with 

(2.18) 

(2.19) 
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1 1 l+l -- - 
R +* -y Rf ( R:” > 

(2.20) 

R t (R 1) is the initial (final) translational Jacobi coordinate 
at transition state. Then the integral cross section and the 
rate constant are calculated by Eqs. (2.16) and (2.17). It 
should be noted that the calculation of the probability 
pJqO Ul,/A~--uiji A (E) as a function of energy is far less time con- 
suming compared to that of P irjrA ,- “, j, A (E,, ) for a number 
of J’s. 

III. EFFECTS OF POTENTIAL ENERGY SURFACE 
TOPOGRAPHY 

In this section we analyze the difference of the two PES 
(LSTH and Varandas) and its effects on the dynamics. 
First, we explain the potential energy curve diagram and 
look into the effects of dimensionality. 

Figure 1 (a) [Fig. 1 (b) ] shows the adiabatic surface en- 
ergies IY~~~+‘=~ [ U:~“,~=o*‘] as a function of p for the 
LSTH surface. The energy in eV shown in the figure is mea- 
sured from the bottom of the PES in the reactant channel. 
The energy levels corresponding to the vibrational states up 
to u = 2 are included for both initial and final arrangements: 
D + H, and DH + H. The avoided crossings at distances 
larger than -4.5a. are so sharp that they may be regarded 
as real crossings, while adiabatic features are seen at dis- 
tances smaller than - 4.0ao. It should be noted that the tran- 
sition state corresponds top = 3.465ao. Figure 1 (a) depicts 
all symmetrized (p = 0) ro-vibrational states, in which the 
oddj states of H, are not included (several states are labeled 
in the figure). We can easily distinguish the arrangements, 
since the levels asymptotically corresponding to D + H, are 
slightly more repulsive than the others. It is interesting to 
note that the levels corresponding to DH (U > 0,j = 0) + H 
have small wells in the reaction region, if we follow the 
curves diabatically. 

Dimensionality effects can be seen from Figs. 1 (a) and 
2, the latter of which corresponds to the collinear case for the 
same PES (LSTH) . It should be noted that the definition of 
the hyperradius p is the same and the bottom of the PES at 
eachp in the 3D case is also the same as that of the collinear 
case, since the minimum energy path is always located in the 
collinear configuration. Each adiabatic energy curve in the 
3D case corresponding to j, = 0 asymptotically coincides 
with that of the collinear case with the same vibrational 
quantum number, of course. On the other hand, at small p, 
qualitatively speaking, the collinear curves are slightly shift- 
ed compared to the 3D curves, namely the former are slight- 
ly more repulsive than the latter. This is because the 3D 
system has one more degree of freedom (hindered rotation) 
that can lower the adiabatic energies at each p. 

Next, let us analyze the two PES, i.e., LSTH and Varan- 
das. The characteristics of these surfaces are summarized in 
Table I. The Varandas surface is composed of a LEPS func- 
tion and a correction term. The equilibrium distances of a 
diatom H, of the two surfaces are very similar. The saddle 
point is located in the symmetric collinear conformation 
with the H-H distance equal to 1.757a. on both surfaces. 

The barrier height of the LSTH surface is larger than that of 
the Varandas by 0.12 kcal mol - ’ . 

Figures 3 (a) and 3 (b) show contours of the energy dif- 
between the LSTH and Varandas surfaces ference 
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FIG. 1. (a) The adiabatic surface energies (I<; Q= ’ as a function of p for 
LSTH surface. 50 levels are included. (b) The same as (a) except that 
p = 0,l and 100 levels are included. 
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FIG. 2. The vibrationally adiabatic energies Vi;’ as a function ofp for the 
collinear LSTH surface. 

(Av= y-H - V”ar*“dm) at the fixed angles 
LI>HH = 180” and 120”, respectively. The loci of constant p, 
the classically allowed region at Etotal = 0.8 eV (measured 
from the bottom of the surface) and saddle point in the speci- 
fied conformation are also depicted in the figures. In the 
classically allowed region of the collinear case [Fig. 3 (a) 1, 
there is little difference between the two PES around the 
saddle point, and the largest difference ( -0.6 kcal mol- ’ ) 
is found in the region, 4.0~(5.Oa,. In the noncollinear case 
[Fig. 3 (b) 1, on the other hand, the potential energy differ- 
ence amounts to 1 .O kcal mol - ’ both in the saddle point 
region (defined at fixed angle) and in the region, 
4.0<p<5.Ckzo. Figures 4(a)-4(c) are similar to Figs. 3 ex- 
cept that the loci of constant 0 are depicted and the angle 
LDHH is taken to be 150”, 120”, and 90”, respectively. 

Magnified adiabatic surface energy curves for the both 

TABLE I. The characteristics of the LSTH and the Varandas surfaces. R,; 
equilibrium interatomic distance (a, ) of Hr. R,,; interatomic distance 
(Q,,) at (symmetric) saddle point of H,. AI’,,; potential barrier height 
(kcalmol-‘). 

LSTH’ 
Varandas” 

R-4 4 AK, 

I.4010 1.757 9.80 
1.4OiI6 1.757 9.68 

’ Reference 13. 
b Reference 14. 

0 2 4 6 8 10 

ROB (a,) 

0 2 4 6 8 10 
&i w 

FIG. 3. (a) Contours of the energy difference between the LSTH and the 
Varandas surface (AV= VLsT” - VVarandas) at the fixed angle 
LDHH = 180’. The interval of contours is 0.2 kcal mol - ’ and the contours 
with the energy larger than 1 .O kcal mol - ’ are omitted. The loci ofconstant 
p (the arc), the classically allowed region at Et,,,, = 0.8 eV (measured from 
the bottom of the surface) (the thick line), and saddle point ( + ) are also 
depicted. (b) The same as (a) except that the angle is fixed at 
LDHH = 120”. 

PES are shown in Fig. 5, in which the dashed lines corre- 
spond to those of the Varandas surface. It can be clearly seen 
that at p 2 6.0~~ both curves are very close to each other, but 
that the LSTH curves become more repulsive than the corre- 
sponding Varandas curves with decreasing p. This clear vi- 
sualization is one of the powers of the HSC approach. 

As is shown below in detail, we have obtained a rather 
large difference in the reaction probabilities for the two PES. 
In order to investigate which parts of the PES differences 
induce this big discrepancy in the dynamics, we have intro- 
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duced a kind of hybrid PES VHYB defined by 
V HYB(R) =f(R) VLsm(R) 

+ [ 1 -f(R)] VVarandas(R), (3.1) 
where R collectively represent the coordinates, p, 8, and 4. 
VHYB coincides with the LSTH surface in the region where 

f(R) is equal to 1, while V HYB coincides with the Varandas 
surface in the other region wheref(R) is equal to 0. In the 
boundary between the two regionsf (R) must be a smooth 
function. In the present calculation we have employed the 
following two types off(R) : One is a function ofp, 

fl (p) = [ 1 + e5(‘-“)] -’ (3.2) 
and the other is a function of 0, 

fi (8) = [ 1 + esCeo-s’] -l, (3.3) 
where p. and 0, represent the positions of switching from 

8- 

2 6- 
X 

QX 
4- 

2- 

01 
0 4 6 

Rnn w 
8 10 

FIG. 4. (a) The same as Fig. 3 (a) except that the loci of constant B (radial 
lines) are depicted and that the angle is fixed at LDHH = 150’. (b) The 
Same as (a) except for LDHH = 12CP. (c) The same as (a) except for 
LDHH = W. 

LSTH to Varandas. Sincep and 8 represent, as noted before, 
the size of the system and the shape of the system, respective- 
l~,f, (PI if2 (0) I is convenient to investigate the effects of 
the size (shape) on the dynamics. As is clearly seen from 
Eqs. (3.1)-(3.3), VyYB is equal to VLsTH atp<p,, while 
V FYB is equal to V LSTH at 8 > e, (near collinear conforma- 
tion ) . 

Figure 6 shows reaction probabilities summed over the 
final rotational states, 

Pi;& =F p;;;,, (3.4) 

as a function of total energy for several p0 values 
( 00 = LSTH, 7,6,5, - 03 = Varandas, in a, ). It should be 
noted that initial collision energy is obtained by subtracting 
0.245 eV, vibrational zero point energy of Hz, from total 
energy. As is seen from Fig. 6, the probabilities in the case of 
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0.8 
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0.21 I I I I 
4 5 6 

P (a,) 

FIG. 5. Magnified adiabatic surface energy curves for the LSTH (cf. Fig 1) 
and the Varandas surface. Solid (dashed) curves represent those of LSTH 
(Varandas). 

LSTH surface are much larger than those of the Varandas 
surface. The difference in P g:& amounts to about 0.15. Al- 
though the adiabatic surface energies U if p = O in Fig. 1 (a), 
as noted in the previous section, look diabatic at distances 
larger than 4Sa,, the probability P&$ in the case of 
p0 = 5a. hybrid surface is still smaller than that of the 
LSTH surface by about 0.05. Here we can think of two rea- 
sons why the reaction probability depends on such a distant 
part of PES. The first possible reason is that the H atom is so 
light and it might be able to transfer by tunneling even at 
such a long distance. The other reason is that the distant part 
of PES induces inelastic transitions which affect the con- 
secutive reaction transitions in the reaction zone. However, 
the surface eigenfunctions at p = 5.0~~ are found to be ex- 
tended very little into the final arrangement with probability 
distribution ~0.000 02. Therefore, it is concluded that the 
second can be the only reason for the difference between the 
probabilities of the LSTH and the p. = 5~2, hybrid surface. 
As the LSTH part increases in the hybrid surface, that is, as 
the value of p. increases, the corresponding probability 
curve comes closer and finally converges to that of the pure 
LSTH surface monotonically, but rather slowly. Another 
interesting feature of Fig. 6 is that all the probability curves 
are very similar in shape to one another. This is probably 
because the overall general feature of the PES is very similar 
to each other. 

Figure 7 shows the same probability of Eq. (3.4) as in 
Fig. 6, but for the hybrid PES’s with use of the second 
switching function [ Eq. (3.3) 1. The results for the several 
values of 19, = - M) = LSTH, 0.3n, 0.4~, 00 = Varandas) 
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FIG. 6. Reaction probabilities summed over the final rotational states 
Pf;“, (u, = 0,I) forseveral hybridsurfaces with useofEq. (3.2) asafunc- 
tion of total energy. See the text for more detail, 

FIG. 7. The same as Fig. 6 for the hybrid surfaces defined with use of Fq. 
(3.3). See the text for more detail. 
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are shown. By referring to Figs. 4(a)-4( c), we can qualita- 
tively understand what part of PES causes the discrepancy in 
probability. Even at the angle LDHH = 150”, there is a dif- 
ference of PES which amounts to 0.6 kcal mol - i , although 
this difference would not manifest strongly in the case of 
0, (0.477. In the case of 8, = 0.37r, however, a large differ- 
ence of - 1 .O kcal mol - ’ exists in the classically allowed 
region (at E,,, = 0.8 eV) at the angle LDHH = 120”. This 
difference appears in the region close to the saddle point and 
should affect the reaction probability directly. The other rea- 
son to cause the probability difference is similar to what we 
have discussed already in relation to Fig. 6. That is the po- 
tential energy difference in a rather distant region at more 
bent structure, i.e., at smaller angles LDHH [see Fig. 4(c) 
for LDHH = 907. This difference affects the nonreactive 
inelastic transitions which can lead to a difference in the 
consecutive reactive transitions. 

IV. APPLICATION OF THE CONSTANT CENTRIFUGAL 
POTENTIAL APPROXIMATION 

The integral cross sections (a,,, ;uf = 0,l) evaluated 
by the CCPA using the LSTH surface are compared in Fig. 8 
with the exact results calculated by Zhang and Miller 
(ZM) .7 The CCPA results are essentially equal to the ZM 
results at low energies. This is generally expected, because at 
low energies only small number of J contribute and the 
CCPA obviously becomes a good approximation. At larger 
energies, the CCPA overestimates the cross sections in com- 
parison with the exact results. In the same figure the CCPA 
integral cross sections for the Varandas surface are also 
shown. The difference of this result from the result of the 
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FIG. 8. Integralcross sections (a,,,; v, = 0,l) as a function of total ener- 
gy. ZM: exact results of Ref. 7 (LSTH surface). LSTH-CCPA: present re- 
sults by the CCPA (LSTH surface). Varandas-CCPA: present results by 
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FIG. 9. The state-to-state rate constants ( kvrm ; u, = 0,l) as a function of 
temperature T. ZM: exact results of Ref. 7 (LSTH surface). LSTH-CCPA: 
present results by the CCPA (LSTH surface). Varandas-CCPA: present 
results by the CCPA (Varandas surface). 

LSTH surface is a direct consequence of the discrepancy in 
reaction probabilities shown in Fig. 6. The feature is similar 
to that obtained by the quasiclassical trajectory calculation 
for the H + H, system.30*31 

The state-to-state thermal rate constants 
(k,,+ 00; of = 0,l) are also calculated by the CCPA in the 
temperature range 200-1000 K, and are shown in Fig. 9 in 
comparison with the exact results of ZM. In both cases of 
uf = 0 and 1 the CCPA results of the LSTH surface are in 
excellent agreement with the exact ones. This is because the 
rate constant, owing to the Boltzmann factor, is determined 
dominantly by the cross sections at lower energies where the 
CCPA is quite accurate. In the same figure the results of the 
Varandas surface calculated by the CCPA are also depicted. 
The result for uf = 0 shows a distinct feature at low tem- 
perature in comparison with the LSTH result. Generally 
speaking, this kind of concave Arrhenius behavior comes 
from quantum mechanical tunneling effects.32 This can be 
confirmed in our case also, if we look at the PES contours of 
Figs. 3. The Varandas surface is lower than the LSTH sur- 
face in the classically forbidden tunneling region, although 
the saddle point energy is the same for the both potentials. 

When we apply the CCPA, we have to inevitably select a 
representative position R ’ [see Eq. (2.19) 1. Unfortunately, 
there is a certain ambiguity in this procedure. So it is neces- 
sary to investigate how sensitive the cross section is to the 
value of R +. By taking l/R +’ = l/R y, l/RF, and 
J( l/R 1’ + l/R?), the integral cross sections a,+, are 
calculated by the CCPA as shown in Fig. IO. The discrepan- 
cy among them is not so large. However, when reaction sys- 
tem is more heterogeneous or involves both heavy and light 
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FIG. 10. Dependence of the total cross section o;,~ (u,. = 0,l) on the val- 
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atoms, the discrepancy would be larger. As was discussed 
before in the sudden and adiabatic treatments,‘* there can be 
the systems in which the conventional transition state (sad- 
dle point) is located far away from the ridge region. A good 
way of choosing R + in these cases should be figured out more 
carefully. 

V. DISCUSSION AND CONCLUDING REMARKS 

Before summarizing the main results obtained in this 
paper, here we discuss another less accurate but still useful 
approximation to estimate the reaction probability of Eq. 
(3.4) than the method employed in the present calculation. 
The best method is, of course, to obtain the R matrix in the 
Jacobi coordinates by the coordinate transformation from 
HSC.4p8.9 Pack and Parker’ proposed the simpler method 
which is briefly described in Sec. II and is actually employed 
in this paper. This method is accurate, ifPend is located in the 
asymptotic region so that the proper boundary conditions in 
the Jacobi coordinates can be used. We explain here a much 
simpler method which does not require any coordinate 
transformation. That is to take an average of the reaction 
probabilities in HSC over a certain range ofp in the asympto- 
tic region in the light of the fact that they oscillate as a func- 
tion ofp. This method has been applied in the collinear reac- 
tions33 and in the approximate treatments of 
three-dimensional reactions,‘* and proved to work well. We 
applied this method to the present exact treatment of the 
J = 0 case. The results are shown in Fig. 11. As is seen from 
this figure, the averaging procedure works acceptably well, 
although it naturally becomes worse at high energies. Thus 
for the qualitative or semiquantitative analyses of reaction 
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FIG. 11. Reaction probabilities Pi;& ( v, = 0,l) summed over the final 
rotational states. (1) The results obtained directly at pend = 9.98 a,, with- 
out averaging by applying the SWJ coordinate boundary conditions. (2) 
The results of averaging taken over 40 pend values in the range 
8.8 la,, <p <9.98a, with Ap = O.O3a,. (3) The present accurate results cal- 
culated with use of the R matrix in Delves HSC and the Jacobi coordinate 
boundary conditions. 

dynamics such as the one reported in this paper this simple 
averaging approximation can be useful. 

We have found and reported a large effect of PES on the 
reaction dynamics. The state specified reaction probabilities 
for D + H, +DH + H are surprisingly different for the 
LSTH surface and the Varandas surface, which is supposed 
to be a good and simple analytical representation of the for- 
mer. Using a hybrid surface defined as a linear combination 
of the LSTH surface and the Varandas surface, we have ana- 
lyzed this phenomenon and pointed out the following two 
origins of the discrepancy: ( 1) The difference of the two 
surfaces in the reaction zone in the noncollinear conforma- 
tion causes directly a discrepancy in the reaction probabili- 
ties. Even the conformation bent by 60” from the collinear 
conformation gives a significant contribution. (2) The dif- 
ference in a distant region even with a large bending ( - 909) 
conformation affects the reactive transitions indirectly. The 
inelastic transitions are influenced by this difference in a dis- 
tant region, and the reactive transitions are affected by this. 
Thus, if we want to obtain accurate quantitative results on 
the reaction dynamics, the corresponding PES must be quite 
accurate not only in the reaction zone, but also in a wider 
region except for the highly inaccessible regions. In this 
sense we have to pay very careful attention to fitting poten- 
tial energy surfaces. Noncollinear conformation gives a sig- 
nificant contribution to the final results, even if the mini- 
mum energy path and the transition state (saddle point) are 
located in the collinear conformation. 
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The CCPA was again proved to be quite useful to esti- 
mate integral cross section and rate constant. This is true 
especially for the latter. The present study demonstrated 
that we can obtain a very accurate estimate if we use the 
exact result for J = 0. 

The HSC approach was shown again to be convenient 
and powerful not only for numerical calculations of reactive 
scattering, but also for clarifying the various effects on the 
reaction dynamics, although a transformation to Jacobi co- 
ordinates in the asymptotic region is required in order to 
obtain quantitatively reliable results. 
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